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ABSTRACT

Beta, the meridional gradient of planetary vorticity, causes tropical cyclones to propagate poleward and

westward at approximately 2m s21. In a previous shallow-water linear model, the simulated vortex

accelerated without limit, ostensibly because beta forced a free linear mode. In the analogous nonlinear

model, wave–wave interaction limited the propagation speed. Subsequent work based upon the asymmetric

balance (AB) approximation was unable to replicate the linear result.

The present barotropic nondivergent model replicates the linear beta gyres as a streamfunction dipole

with a uniform southeasterly ventilation flow across the vortex. The simulated storm accelerates to

unphysical, but finite, speeds that are limited by vorticity filamentation. In the analogous nonlinear model,

nonlinearly forced wavenumber-1 gyres have opposite phase to the linear gyres so that their ventilation flow

counteracts advection by the linear gyres to limit the overall vortex speed to approximately 3m s21.

A bounded mean vortex with zero circulation at large radius must contain an outer annulus of anticyclonic

vorticity to satisfy the circulation theorem. The resulting positive mean vorticity gradient constitutes an outer

waveguide that supports downstream-propagating, very-low-frequency vortex Rossby waves. It is confined

between an inner critical radius where the waves are absorbed and an outer turning point where they are

reflected. Vorticity filamentation at the critical radius limits the beta-drift acceleration. The original unlimited

linear acceleration stemmed from too-weak dissipation caused by second-order diffusion applied to velocity

components instead of vorticity. Fourth-order diffusion and no outer waveguide in the Rankine-like vortex of

the AB simulations plausibly explain the different results.

1. Introduction

Tropical cyclone (TC) track forecasting has improved

substantially since the mid-twentieth century, largely

through improved physical understanding. In simplest

terms, TCmotion can be thought of as the vector sum of

advection by the surrounding wind and propagation,

primarily due to beta b, the meridional gradient of the

Coriolis parameter f (Holland 1983). In the Northern

Hemisphere, b forces a wavenumber-1 asymmetry

composed of a cyclonic gyre southwest of the center and

an anticyclonic gyre northeast of it, such that the flow

between these ‘‘b gyres’’ advects the vortex poleward

and westward. During the 1980s and 1990s, b-gyre dy-

namics was the focus of intense modeling and observa-

tional efforts (e.g., Chan and Williams 1987; Chan 2005;

Li and Wang 1994; Ritchie and Frank 2007).

Willoughby (1992, hereafterW92, and 1994, hereafter

W94) used linear and nonlinear versions of a primitive-

equation, vortex-tracking semispectral model to simu-

late the motion of a shallow-water barotropic vortex

on a b plane. In the linear model, the vortex accelerated

toward the northwest without limit, ostensibly through
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resonant growth of a free linear mode. In the analogous

nonlinear model, wave–wave interaction limited the

westward and poleward motion to reasonable speeds

of a few meters per second. Subsequent work by

Montgomery et al. (1999, hereafter MMN) was unable

to replicate the linear acceleration. Here, building upon

Gonzalez (2014), we revisit the problem using a differ-

ent mean vortex in a barotropic nondivergent (BND)

context both to resolve the question of the free mode’s

existence and to clarify the nonlinear dynamics. Since

the BND model is the simplest one possible that con-

tains the essential rotational dynamics of vortex motion

on a b plane, the results clarify the mechanism of TC

motion and its sensitivity to dissipation and mean wind

profile.

2. Rotational dynamics

In idealized TCs, the winds swirl cyclonically around

the center, for the most part in gradient balance with

almost circular pressure fields (Fig. 1a). Since TC dy-

namics are overwhelmingly rotational, absolute vortic-

ity conservation is a conceptually simple basis for

modeling them in the BND context. The BND absolute

vorticity is the sum of relative and planetary vorticities.

Beta, b5 ›f /›y, represents the change in f across the

circulation. The axially symmetric relative vorticity de-

creases outward in a neighborhood around TCs’ centers.

In vortices with nonzero circulation at large radius, the

vorticity decrease can be monotonic. In bounded vorti-

ces, such that the circulation becomes zero beyond some

finite radius, an outer annulus of anticyclonic relative

vorticity exists, consistent with the circulation theorem

(Fig. 1b). This feature supports a positive (more nega-

tive to less negative) peripheral vorticity gradient. Thus,

bounded and unbounded (i.e., monopole) vortices can

have significantly different vortex Rossby wave (VRW)

propagation.

Vorticity is a conservative property in frictionless

BND flows; although in nature it is stretched, com-

pressed, and tilted. Diabatically-induced updrafts sus-

tain the axially symmetric primary vortices of real TCs

through vorticity tilting and stretching. In the BND

model the vortex wind and vorticity profiles are specified

at the outset andmaintained throughout the calculation.

Conservation of absolute vorticity should require

equatorward-moving air parcels to develop cyclonic

relative vorticity as they encounter less cyclonic plane-

tary vorticity; whereas poleward-moving parcels de-

velop anticyclonic relative vorticity as they encounter

more cyclonic planetary vorticity. By itself, conservation

of absolute vorticity would induce a cyclonic relative

vorticity gyre equatorward of the vortex center and an

anticyclonic gyre poleward of it. More generally, non-

zero radial gradients of axially symmetric relative vor-

ticity exist. Radial advection, time changes, and the

vortex motion through its surroundings also contribute

to the process (e.g., Chan and Williams 1987). These

factors change the phase and amplitude of the induced

b gyres.

Gradients of mean-flow vorticity can also support

propagationofVRWs (e.g.,MacDonald 1968;Montgomery

and Kallenbach 1997), but they are zero outside the

cores of Rankine-like, unbounded vortices where cy-

clonic vorticity concentrated in the vortex core induces a

free (i.e., irrotational) circulation that extends to large

radius. It is generally accepted that some combination of

these processes (e.g., Holland 1984) and not a net

Coriolis force (Rossby 1948) acting on the vortex is re-

sponsible for the approximately 2ms21 poleward and

westward ‘‘b drift’’ superimposed on advection by sur-

rounding ‘‘steering currents.’’

FIG. 1. (a) Cyclostophic and gradient swirling wind from the

WW11mean vortex and (b) corresponding relative vorticity scaled

to emphasize the outer waveguide.
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W92 and W94 developed a shallow-water (500-m

depth) time-marching model to simulate both linear

and nonlinear vortex motion. It had 4-km horizontal

resolution on a 3000-kmdomain. The vortexwas bounded

at 1000-km radius with zero circulation beyond that radius

so that the cyclonic core was surrounded by anticyclonic

vorticity and a reversal of vorticity gradient.

The linear case produced a b-gyre streamfunction dipole

that appeared to represent a normal mode because it grew

linearly with time to large amplitude when beta forced it at

zero frequency, and it was able to persist in the absence of

explicit forcing when beta was turned off after the asym-

metry had developed for 240 h. The track from linear

calculations showed an essentially constant acceleration

poleward andwestward to unphysically high speeds. It was

possible by rotating and scaling the b gyres to reinitialize

vortex motion with any desired speed or direction.

In the analogous nonlinear case, wave–wave interactions

changed the axially symmetric structure of the vortex,

produced destructive interference among the Fourier com-

ponents, and limited propagation speed. The nonlinear

evolution of the mean vortex produced an annulus of an-

ticyclonic flow on the vortex periphery that forced a set of

outer b gyres of opposite polarity to the original inner ones.

Asymmetric balance (AB; Montgomery and Shapiro

1992) can support simulation of quasi-balanced flows’

contribution to the vortexmotion even when the Rossby

number is large (i.e., V0/fL � 1, where V0 is the mean

swirling velocity and L is the characteristic horizontal

dimension). The AB approximation requires the line-

arized Doppler-shifted frequencies to be well below the

local inertia frequency. AB was designed to be a math-

ematical framework for studying the slow evolution of

rapidly rotating fluid systems such as TCs. It can address

asymmetric dynamics of phenomena such as spiral

rainbands, vortexmotion, and TC–environment interaction.

MMN’s AB simulation of shallow-water vortex mo-

tion yielded different linear results from W92 inasmuch

as their translation speed asymptotically approached

approximately 6ms21 after 240h. The speed was faster

than full-physics models or observations and not much

slower than W92’s linear 8m s21. Possible reasons for

the different results include use of different vortex

tracking, significantly different vorticity dynamics in

MMN’s completely cyclonic vortex, or fourth-order

(K 5 60m2 s21) instead of second-order diffusion.

MMN argued against existence of b-gyre normal modes

because finite drift speeds were always attained with

the AB approximation in a finite-depth vortex. In AB

reinitialization experiments, the b gyres persisted for

long times but not indefinitely. They decayed and

‘‘axisymmetrized’’ with a half-life proportional to the

radial shear.

3. Vortex Rossby waves

Here we continue the VRW work of Cotto (2012),

Gonzalez (2014), and Cotto et al. (2015, hereafter

Part I) by applying linear and nonlinear versions of

the same formulation to wavenumber-1 waves on a

BND vortex that moves through a still environment

on a b plane. Where the mean vorticity decreases

outward, VRWs propagate upstream so that their

azimuthal phase velocity with respect to the ground is

slower than the mean swirling flow. Thus, they are

advected cyclonically downstream. As described in

Part I, two-dimensional BND Rossby waves in cy-

lindrical coordinates are confined to a ‘‘passband’’

between zero frequency and V1D, the frequency of a

one-dimensional Rossby wave with the same tan-

gential wavenumber and rotation frequency. The

latter frequency marks a turning point where the local

radial wavenumber passes through zero so that the

radial structures of VRWs on the high-frequency side

of the turning-point radius are evanescent rather than

sinusoidal.

This work revisits W92 and W94’s vortex-following,

shallow-water, b-plane modeling, but in a BND context.

The model is completely reformulated in MATLAB. It

is initialized from asymmetry and rest. Time integration

of the vorticity equation yields the asymmetric structure

of the vortex, including a well-defined wavenumber-1

asymmetry resulting from the displacement between the

center of mean-vortex rotation and the origin of the

cylindrical coordinates. After each time step, the vortex

is repositioned to remove the apparent asymmetry, and

the motion inherited from previous computations is

updated. This is the simplest model that embodies the

essential rotational dynamics of the b drift.

Translating cylindrical coordinates (Fig. 2) are the

natural choice to represent the moving circular mean

vortex. The variables used are mean tangential wind V0;

radius r; azimuth angle reckoned cyclonically from north

l; wavenumber-1, perturbation radial wind component

u1 (positive outward); perturbation tangential wind

component y1 (positive cyclonically); perturbation geo-

potential f1; Coriolis parameter at the vortex center

(nominally at 208N; assumed constant) f0; and b (also

assumed constant).

The derivation of the BND vorticity equation begins

with the linearized radial and tangential momentum

equations [(1a) and (1b)], where ›/›t1 (V0/r)›/›l repre-

sents the linearized Lagrangian derivative, j0 5 2V0/r1 f0
is the inertial parameter, z0 5 ›V0/›r1V0/r1 f0 is the

mean-flow vorticity, and cr and cl are, respectively, the

radial and tangential components of the reference-

frame motion:
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Cross-differentiating and eliminating the geopotential

yields the vorticity equation:
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Nondivergence means that the second term in (2) is

zero and that u1 and v1 can be represented with a

streamfunction, c1(r, l, t), such that u1 52(1/r)›c1/›l,

y1 5 ›c1/›r, and z1 5 ›y1/›r1 y1/r2 r21›u1/›l5 ›2c1/

›r2 1 r21 ›c1/›r1 r22›2c1/›l
2. Thus, (2) becomes
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We seek time-domain solutions for the wavenumber-1

streamfunction. We assume that the solutions are products

of imaginary exponents in azimuth with a complex am-

plitude that is a function of radius and time, c1(r, l, t)5
Re[C1(r, t)e

2il]. To facilitate discussion, we sometimes

treat these solutions as though the time variation could be

represented with a nonzero rotation frequency v. In the

time domain, the vorticity equation becomes a second-

order radial-structure equation for the streamfunction

amplitude:
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In the beta-plane problem,v5 0 because theb forcing is

steady. The complex representation of the radial reference

frame’smotion is cr 5Re[2i(cx 1 icy)e
2il], consistentwith

W92. If one replaces the time derivative with a specified

rotation frequency for the wave train, ›/›t/ iv, such that

the leading factor that multiplies the vorticity in (4) is the

Doppler-shifted frequency, iV5 i(v2V0/r). Even though

v is constant, the Doppler-shifted frequency is a variable

function of r. As in Part I, assuming zero-order, Hankel–

function local solutions produce a local dispersion relation:

V5

�
v2

V
0

r

�
5

(1/r)(›z
0
/›r)

k2
r 1 (1/r2)

, (5)

where kr is the local radial wavenumber. As with plan-

etary Rossby waves,V is negative when ›z0/›r, 0. Since

V0 decreases as r increases,2V0/r becomes smaller (less

negative) away from the center and larger (more nega-

tive) toward the center. At the critical radius where V
approaches zero, the waves become locally very short

and are absorbed.When ›z0/›r. 0 far from the center in

bounded vortices, the VRWs propagate downstream so

that the critical radius is nearer the center.

Examination of (5) shows that radial group and

phase velocities are of opposite sign and can be inward

or outward. The limits of wave propagation speed

are dictated by kr. The most negative V5V1D [
(›z0/›r)(n/r)

21 coincides with a turning point of (5)

where kr is locally zero and (5) reduces locally to the

dispersion relation for a one-dimensional VRW. It also

corresponds to the fastest tangential wave propagation

with respect to the mean wind (the most negative pos-

sible value of V at any radius). At V1D, the group ve-

locity is zero. For small positive or negative radial

wavenumbers, the group velocities are slow and of op-

posite sign to the wavenumber. For frequencies greater

than V1D, the radial wavenumber is imaginary so that

the solutions are radially evanescent. Thus, VRWs are at

least partially reflected because they can jump to the

FIG. 2. Translating cylindrical coordinates, illustrating the mean

swirling flow, perturbation velocity components, vortex translation,

and centering error. The hurricane symbol indicates the axis of vortex

rotation displaced by vector a from the reference-frame origin.
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solution with opposite radial group velocity in the neigh-

borhood of the turning point when their frequencies

are Doppler shifted toV1D. This process is simplest when

the domain extends far on the high-frequency side of

the turning-point radius. If the situation is complicated

by nearby domain boundaries or additional turning points

that restore sinusoidal propagation, varying degrees of

partial reflection or overreflection are possible. The latter

possibility offers an interesting perspective on instability

(e.g., Lindzen andTung 1978; Lindzen andBaker 1985) in

other contexts.

In contrast with Part I, here we seek time-domain so-

lutions. The model integrates the system defined by (4),

retaining the time-domain derivative of vorticity as a

second-order finite difference, tomarch the wavenumber-1

vorticity forward in time. Once the vorticity has been ad-

vanced to the new time level, the model uses the Lindzen

and Kuo (1969; see also Part I) algorithm to invert the

Poisson equation for the streamfunction. Solutions are

semispectral with sinusoidal variation (wavenumber 1

only) in azimuth and finite-difference representation in

azimuth and time. The domain extends to 4000-km radius

with uniform 1-km resolution. In addition, the outer

500 km of the domain contains a ‘‘sponge ring’’ that, as

the name suggests, absorbs waves through imposed strong

Newtonian dissipation.As a result, any outward-propagating

waves that approached the outer boundary would be ab-

sorbed so that the physical solutions would not be con-

taminated by reflection.

During each time step, the model retains the vortex

motion inherited from the previous iteration. Since the

vortex is generally accelerating, the computed stream-

function also contains an ‘‘a gyre’’ (pseudo mode) com-

ponent, complex representation i(ax 1 iay)V0(r). The

a gyres are apparent asymmetries that arise from mis-

alignment between the predicted center of rotation of the

mean vortex and the coordinates’ origin. The a-gyre

streamfunction is proportional to the misalignment vec-

tor and mean swirling wind profile. Thus, a complex least

squares fit of V0(r) to C1(r, t) provides a good approxi-

mation to the center-positioning error and the a-gyre

asymmetry. Since the CFL criterion is much less of an

issue in the BND model than it was in the primitive-

equation model of W92, the present model repositions

the vortex after each of its relatively long time steps.

This vortex-tracking method differs significantly from

MMN’s AB model, which was set in fixed coordinates

that were periodically repositioned to move the vortex

center to the center of a circle fitted to the height con-

tour at the radius of maximum wind. As shown sub-

sequently, the consistency between the current results

and MMN’s argues against different centering as an

explanation for the different AB results.

4. Linear results

The linear model obtains solutions for the vorticity,

streamfunction, and motion forced directly through

advection of b by the mean swirling flow. The axially

symmetric swirling flow advects planetary and pertur-

bation vorticity. The asymmetric perturbation radial flow

advects axially symmetric mean vorticity. The model is

initialized from zero perturbation amplitude and rest,

marches the vorticity forward in 2.5-min (150 s) time

steps, and utilizes the Lindzen–Kuo solver to invert the

vorticity to obtain the streamfunction and adjusts the

vortex position. The new vorticity then becomes the input

for the next time step.

The mean cyclostrophic wind (Fig. 1a) follows the

same Wood and White (2011, hereafter WW11) profile

used in Part I, with specified maximum tangential wind

(VMAX 5 50ms21), radius of maximum wind (RMW;

25km), and three parameters that define the power-law

exponent’s shape inside the eye (proportional to be-

tween r and r3/2), power-law shape outside the eye

(proportional to r21/2), and the width of the transition

between these power laws in the neighborhood of the

RMW. Thus, the cyclostrophic circulation would be

unbounded in the sense that its circulation becomes

arbitrarily large with increasing radius. The model,

however, uses the gradient wind computed from the

cyclostrophic wind (e.g., Willoughby 2011). Its circula-

tion decreases with increasing radius so that the mean

vortex is bounded in the limit of large radius. As shown

previously, the outer part of the vortex contains a ring of

anticyclonic relative vorticity (Fig. 1b) and a positive

radial vorticity gradient. In bounded vortices, such as

the gradient-balance WW11 profile, the beta gyres may

be VRWs propagating downstream on the reversed

peripheral-mean vorticity gradient. They would be con-

fined to a frequency band between zero and (a now

positive) V1D. Thus, in bounded vortices there is a po-

tential for two waveguides to exist. The inner guide

supports propagation against the cyclonic mean flow,

while the outer has the waves that propagate faster

than the mean flow. Since both the mean swirling flow

and the vorticity gradient are weak in the outer wave-

guide, the VRW propagation should be slow.

For comparison, we also simulate motion using the

mean vortex of MMN. It is essentially a smoothed

Rankine vortex with all of its vorticity concentrated in

the core, a narrow skirt of cyclonic vorticity extending a

short distance beyond the RMW, and an extensive free

vortex that has constant circulation extending to arbi-

trarily large radius (Fig. 3a). As described previously,

the gradient WW11 vortex has an outer waveguide

for downstream-propagating VRWs. Since the MMN
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vortex has amonotonic negative vorticity gradient, it has

no outer waveguide (Fig. 3b).

Since this is a time-marching problem, (4) is solved for

the perturbation vorticity tendency:
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The terms on the right-hand side are perturbation vorticity

advection by themean tangential wind,mean-flow vorticity

advection by both the radial perturbation flow and the

vortex motion, and planetary vorticity-gradient advection

by the mean flow. The numerical algorithm uses leapfrog

time marching with an Asselin filter. The model typically

runs for 10 simulated days (240h or 2880 time steps).

The complete linear solution replicates the results

of W92 with a northwestward track that accelerates

throughout the simulation but may asymptote after 240h.

The vortex moves a total of approximately 5400km in 10

simulated days (Fig. 4a) with an average speed of about

6.25ms21 and final speed of 8.5ms21 (Fig. 4b). The large

distance traveled by the vortex in this model compared

with approximately 3800km in W92 stems from a larger

vortex, nondivergence, and weaker dissipation. Since the

Poisson equation for the vorticity does not contain the

Rossby-radius term, it yields a larger streamfunction than

the divergent model would with the same vorticity. The

mean vortex translation was toward 3258. The speed is

sensitive to the imposed diffusion with K 5 1m2 s21.

Larger values yield slower acceleration.

The vorticity field exhibits trailing spirals that become

filamented at the critical radius, 500–700km (Fig. 5a).

The vorticity filaments wrap tightly around the vortex

FIG. 3. Radial profiles of (a) wind and (b) vorticity gradient,

comparing the gradient windWW11 profile (solid) with that used in

MMN (dashed).

FIG. 4. (a) Track and (b) speed and direction of motion for the

WW11 vortex initialized from rest and axial symmetry on a b plane

at 208N latitude.
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near this radius, where their frequencies are Doppler-

shifted to zero. Vorticity waves’ inward-propagating

energy is absorbed at the critical radius as their radial

wavelengths become increasingly shorter. Conversely,

the frequencies of waves that propagate outward are

Doppler shifted to V1D so that they are at least partially

reflected, typically at r . 1000 km. The streamfunction

field illustrates the b gyres as a dipole in the outer part of

the vortex (Fig. 5b). For simplicity, we adopt a consistent

color table where cool colors represent anticyclonic

vorticity and streamfunction, z, 0 and c. 0, and warm

colors represent cyclonic vorticity and streamfunction,

z. 0 and c, 0. Contours of c represent streamlines of

the perturbation flow. The streamfunction amplitude is

proportional to the vortex speed and the contour lines’

direction across the center is consistentwith northwestward

translation.

The radial variation of the b gyres’ Doppler-shifted

frequency in the linear model is subtle. Although the

forcing is exactly at zero frequency, it also excites waves

with nonzero, but very low, frequencies that are nearly in

resonance. VRWs in the outer waveguide have nearly

zero cyclonic frequencies. They can propagate with a

small radial group velocity in a narrow passband between

zero frequency and V1D (Fig. 6). The densely packed set

of low-frequency waves in the outer waveguide makes up

another example of the quasimode-like feature (Schecter

et al. 2000; Schecter and Montgomery 2003, 2004) de-

scribed in Part I. Beta forces these waves close to their

resonance, allowing them to grow linearly to large am-

plitude given sufficient time. This process appears to ex-

plain the continuing acceleration in the original linear

model. The largest-amplitude (v 5 13 1026 s21) wave is

confined to a radial interval between 1100 and 1700km,

which includes the centers of the b gyres.

Loss of energy propagating to the critical radius cau-

ses the VRWs to be weakly damped so that the wave-

guide in which they are trapped is ‘‘leaky’’ in the sense

that wave energy is lost through critical-radius absorp-

tion. Initially inward-propagating energy eventually

reaches the critical radius where its vorticity becomes

filamented and is transferred to the mean flow. Initially

outward-propagating energy is at least partially re-

flected at the turning-point radius and then propagates

inward to be absorbed at the critical radius. Since the

Doppler-shifted frequencies are so low, the radial group

velocities are slow and dissipation by this process is

gradual. Whether the VRWs represent a continuum or a

cluster of discrete frequencies is unclear; although the

former interpretation seems more likely.

FIG. 5. (a) Wavenumber-1 vorticity and (b) streamfunction for the

WW11 vortex moving on a b plane, as shown in Fig. 4.

FIG. 6. Radial variation of Doppler-shifted frequency on the

periphery of the WW11 vortex for different very low values of the

rotation frequency with respect to the ground v. The outer wave-

guide lies between zero Doppler-shifted frequency and V1D.
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5. Nonlinear model

The nonlinear version of the model represents only

semispectral interactions between waves with azimuthal

wavenumbers 1 and 2 so that the streamfunction is

C1(r, t)e
2il 1C2(r, t)e

22il. Fourier transformation in

azimuth simplifies the system to two linear vorticity

equations. Wave–wave interaction terms couple the

equation and contain all of the nonlinearity. Linearly

forced (by b) wavenumber 1 interacts nonlinearly with

itself to force wavenumber 2, while wavenumber 1 in-

teracts nonlinearly with wavenumber 2 to force the

nonlinear part of wavenumber 1.

This formulation calculates the complex wavenumber-1

and -2 vorticities in the same way as the linear model but

with a subset of the possible nonlinear interactions included.

We separate the solutions into three vorticity and stream-

function components: linearly forced wavenumber 1, non-

linearly forced wavenumber 2, and nonlinearly forced

wavenumber 1. Computation of linear wavenumber-1 vor-

ticity is analogous with the linear model, apart from the

effect of slower motion. The significant differences lie in

wavenumber 2 and nonlinear wavenumber 1.

The algorithm is amuch simplified version of that used

in W94. Time marching the complex wavenumber-2

vorticity equation advances the vorticity forced by

nonlinear interactions of wavenumber 1 with itself:

›z
2

›t
52

y
0

r

›z
2

›l
2 u

2

›z
0

›r
2 (y

1
2 c

l
)

�
1

r

›z
1

›l
2b sinl

�

2 (u
1
2 c

r
)

�
›z

1

›r
1b cosl

�
. (7)

The terms on the right-hand side are linear tangential

vorticity advection by the mean vortex, linear radial ad-

vection of mean-vorticity by the perturbation flow, and

nonlinear tangential and radial advection of perturbation

and planetary vorticity. The nonlinear tendency equation

for the wavenumber-1 complex vorticity is nearly the

same as (7), but with additional terms representing the

forcing (from b effect and vortex motion):
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Overbars denote complex conjugates. The model marches

(7) and (8) forward in time, inverts Poisson equations

forced by the resulting vorticities to obtain wavenumber-1

and -2 streamfunctions, and applies a-gyre closure to C1

to track the vortex motion. We artificially separate z1
into a linear part forced by the terms on the right-hand

side of the first line of (8) and a nonlinear part forced by

the terms in the second line. Since the actual solutions

are the real parts of z1 and z2, we neglect nonlinearly

forced z0 and z3, as well as all other nonlinearly forced

vorticities.

The nonlinear-model results replicate W94 by signif-

icantly limiting the vortex translation speed. For the

entire 10-day simulation, the vortex travels only about

3260km, equivalent to an average speed of 3.8m s21

(Fig. 7a). The motion is faster than in W94 for the same

reasons as in the linear model, plus it has more severe

FIG. 7. (a) Track of aWW11 vortex moving nonlinearly for 240 h

with truncation at tangential wavenumber 2 on a b plane, and

(b) its speed and direction of motion as functions of time.
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spectral truncation in azimuth. The translation speed

oscillates between 3 and 5ms21 because wavenumber 2

initially grows slowly and then becomes larger than is

needed to control the linear acceleration.As a result, the

beta gyres decrease leading to slowing motion, followed

by a weak acceleration as wavenumber 2 approaches

equilibrium. These dynamics also occurred in W94

(his Fig. 1). Ultimately, the translation speed oscillates

FIG. 8. Asymmetric perturbation fields for a WW11 vortex moving nonlinearly on a b plane: linearly forced

wavenumber-1 (a) vorticity and (b) streamfunction, nonlinearly forced wavenumber-2 (c) vorticity and (d) stream-

function, and nonlinearly forced wavenumber-1 (e) vorticity and (f) streamfunction. The phase reversal of (e) and

(f) relative to (a) and (b) illustrates the mechanism by which wave–wave interaction limits vortex speed.
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around 3ms21 near the end of the computation (Fig. 7b).

The direction of motion is generally northwestward

(;3258), but not as consistently as in the linear model.

The computed translation speed is faster than the 2ms21

b drift observed in nature. Nonlinearly forced changes in

the mean outer circulation that can affect the motion by

changing the effective radius where the b effect acts are

excluded here.

The linearly forced wavenumber-1 vorticity (Fig. 8a)

and streamfunction (Fig. 8b) are much the same as in the

FIG. 9.Wavenumber-1 asymmetries forced byb-like forcing that rotates with frequencies (a) 13 1024, (b) 13 1025,

(c) 1 3 1026, (d) 21 3 1026, (e) 21 3 1025, and (f)21 3 1024 s21. The phase reversal and maximum amplitude at

v 5 1 3 1026 are consistent with nearly resonant forcing of a vortex Rossby wave trapped in the outer waveguide.
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linear case. Nonlinear interaction of wavenumber 1 with

itself forces wavenumber 2. The wavenumber-2 vorticity

field displays a ‘‘sunflower’’ pattern with four vorticity

gyres of alternating polarity. Trailing spirals and fila-

mentation are evident near the critical radius (Fig. 8c).

The wavenumber-2 streamfunction (Fig. 8d) exhibits a

quadropole structure of alternating polarity, similar to

that described in W94. The nonlinear wavenumber-1

vorticity field is much like its linear counterpart, but with

the polarity of the vorticity gyres reversed (Fig. 8e).

A key result lies in the nonlinear wavenumber-1

streamfunction (Fig. 8f) forced by the interaction be-

tween wavenumbers 1 and 2. The resulting flow is like

the linear b gyres, but with the anticyclonic gyre

southwest of the center and the cyclonic gyre northeast

of it. The ventilation flow between the gyres is toward

the southeast, opposite to the northwestward flow be-

tween the linear b gyres that is responsible for the

b drift. Formation of these nonlinearly forced ‘‘anti-

b gyres’’ constitute the mechanism that limits the vortex

translation speed in the nonlinear model.

6. Frequency-domain solutions

The predecessor of the original time-domain simula-

tion was a frequency-domain model (Willoughby 1988)

that attempted to simulate steady linear motion on a

b plane of a shallow-water (4-km depth) vortex. The

model diagnosed the streamfunction, velocity potential,

and geopotential at a specified frequency using the lin-

ear vorticity, divergence, and mass continuity equations.

It computed the vortex translation variationally. The

unrealistically fast poleward and westward motion pre-

dicted in the frequency domain first motivated the hy-

pothetical excitation of a normal mode by the b effect.

Significance of nonlinear processes became apparent

subsequently.

Here we replicate this approach in a BND context to

gain insight into the b gyres’ dynamics. The frequency-

domain version of linear model simulates for a single

wavenumber-1 component at a specified frequency.

Although the b-effect forcing is at zero frequency, the

frequency-domain simulations’ forcing has the same

spatial structure as b but rotates with a low imposed

frequency. The spatial domain is an annulus that ex-

cludes the subdomain within 250 km of the center to

prevent growth of the a-gyre asymmetry. The pertur-

bation streamfunction is set to zero at the r 5 250-km

boundary.

The governing equation is the wavenumber-1 vorticity

equation Fourier transformed in both time and azimuth

(e.g., Part I) and solved for specified frequency v using the

Lindzen–Kuo algorithm. The vorticity and streamfunction

fields are aligned with the observed b gyres at near-zero

frequencies but rotate from the northwest–southeast ori-

entation forv significantly different from zero. Frequency-

domain calculations are simpler to work with. The vortex

does not move, and exclusion of the domain center allows

clean separation of the a and b gyres.

The streamfunction changes magnitude and rotates as

the frequencies decrease by factors of 10 from 1 3 1024

through 1 3 1026 s21 and then from 21 3 1026

through 21 3 1024 s21. At v 5 1 3 1024 s21 (Fig. 9a),

the dipole has a cyclone north of the center and an an-

ticyclone south of it so that the streamfunction phase

lags the forcing by p/2 and is opposite to that expected

from steady-state tangential advection of planetary

vorticity alone. When the frequency decreases to 1 3
1025 s21 (Fig. 9b), the gyres rotate cyclonically by about

p/4, but the flow across the center rotates p/2 to straight

northward. When v 5 1 3 1026 s21 (Fig. 9c) the stream-

function amplitude is largest, and the flow across the center

is toward approximately 3158, consistent with the b drift.

In subsequent frames, the cyclonic rotation continues

(Figs. 9d and 9e), ultimately producing a phase rotation

ofpwhenv,213 1025 s21 (Fig. 9f).This gyreorientation

also lags the—now oppositely rotating—forcing by p/2.

In these realizations the Newtonian dissipation time

(i.e., time to decrease the amplitude by a factor of e21) is

16 days. In other calculations, the maximum amplitude

of the streamfunction is inversely proportional to the

Newtonian dissipation rate. The gyres appear to be hy-

drodynamically stable because experimentation with

different v and dissipation times of 1–16 days yields

no apparent resonance for the imaginary part of the

frequency.

FIG. 10.Maximumstreamfunction amplitudeas a functionof frequency

for the b-plane problem illustrated in Fig. 9.
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Maximum streamfunction amplitude (Fig. 10) plot-

ted as a function of v clearly shows a peak response at

v 5 1 3 1026 s21, where the gyre orientation is most

like the zero-frequency b gyres of a moving vortex. The

amplitude increases as the frequency decreases to-

ward that value, exhibits a sharp maximum, and then

decreases at increasingly negative frequencies. The max-

imum coincides with the phase reversal. The Doppler-

shifted frequencies of the b-gyre-like waves allow them

to propagate between V1D and zero frequency. As in

the time-domain model, the waves are confined to a

narrow waveguide at a very low, positive, cyclonic

frequency.

7. Linear-model reinitialization

Reinitialization of the linear model replicates another

test of the normal-mode hypothesis. Running the linear

model for five simulated days produces mature b-gyre

asymmetries. Then the resulting b gyres are rotated and

scaled and used to initialize the vortex motion on an

f plane. If the b gyres are free waves, then the motion

should persist and turn at a rate consistent with the

frequency identified in the previous section.

In these simulations arbitrary direction and speed are

selected. They produce a complex factor used to multi-

ply C1 to produce an initial asymmetry consistent with

the desired motion. In the case shown, the b effect is

turned off after simulated day 5. The reinitialization

imposes 5m s21 translation speed toward 2708.
For the remainder of the simulation, the vortex track

exhibits slow cyclonic curvature and gradual decel-

eration (Fig. 11a). By day 10 (5 days after b was turned

off), the vortex speed has decreased fairly quickly to

2.5m s21, but ultimately, the rate of deceleration slows

and levels off, yielding a speed of about 2m s21 after

10 days of unforced motion (i.e., day 15 of the simula-

tion). The gradual cyclonic curvature and slowing of

themotion are consistent with the very low (but nonzero)

frequencies and leaking of wave energy to the critical

radius where it is symmetrized. The streamfunction

field at 360h (Fig. 11b) illustrates the persistent rotated

b-gyre structure. The ventilation flow between the

streamfunction gyres is now toward the west-southwest,

consistent with their reinitialization and subsequent

rotation.

FIG. 12. Three analytical wind profiles: gradient-balancedWW11

(solid, as in Fig. 2), the narrow-transition, linear-quadratic sec-

tionally continuous profile (dotted), and the narrow-transition,

linear-cubic profile (dashed). The second and third profiles have

identically zero circulation beyond r 5 1500 km.

FIG. 11. (a) Track of a vortex moving on a b plane, as in Fig. 4a,

and then reinitialized after 120 h by rotating and scaling the b gyres

to produce a motion toward 2708 at 5m s21. (b) Streamfunction 10

days after the reinitialization.

OCTOBER 2015 GONZALEZ ET AL . 3969



8. Other profiles

This paper focuses on motion of the gradient wind

WW11 vortex on a b plane. We chose that mean vortex

because it is both reasonably realistic and fundamentally

different from the mean vortices used in MMN, W92,

and W94. In this section we compare b-plane simula-

tions using the MMN and WW11 vortices with two

model vortices that exhibit the essential features of

those used in W92 and W94.

The WW11 vortex is ‘‘asymptotically bounded’’ in the

sense that its circulation approaches zero at large radius, but

never becomes identically zero. It contrasts with the ‘‘un-

bounded’’ vortex of MMN in which the vorticity is mono-

tonic and concentrated around the center (e.g., Fig. 3b),

such that the circulation becomes constant at large radius.

Two additional vortices examined (Fig. 12) are section-

ally continuous,made up of solid rotation near the center, a

narrow quadratic transition across the radius of maximum

wind, and a power-law outer wind profile in which thewind

goes smoothly to zero at a specified outer radius. Thus, they

are ‘‘finitely bounded’’ in the sense that they have identi-

cally zero circulation beyond the outer radius. Their piece-

wise continuous structures are specified by
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The parameters in (9) are radius of maximum wind

rM; maximum wind yM; radius and wind at the inner

FIG. 13. The outer waveguide for two finitely bounded vortices: (a) radial vorticity gradient for the linear-quadratic profile; (b)V1D and selected

very low Doppler-shifted frequencies, also for the linear-quadratic profile; and (c),(d) as in (a) and (b), but for the linear-cubic profile.
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transition, r2 , rM and y2; radius and wind at the outer

transition, r1 . rM, and y1; the outer bounding radius r9;

and exponent of the outer parabola n. The transition

winds and radii are chosen to generate smooth wind

profiles. The ‘‘linear quadratic’’ profile uses n 5 2, and

the ‘‘linear cubic’’ profile uses n 5 3.

Both of these finitely bounded vortices exhibit outer

annuli of anticyclonic vorticity and peripheral rings of

positive vorticity gradient that support the outer wave-

guides. The linear-quadratic profile’s (Fig. 13a) positive

vorticity gradient extends from about 850 to 1500km.At

the outer boundary, the vorticity gradient jumps to zero

discontinuously. As a result, the V1D profile exhibits a

‘‘shark’s fin’’ shape with the largest value at the dis-

continuity (Fig. 13b). The waveguide extends from

1050km to the bounding radius.

The linear-cubic wind profile decreases more quickly

outside rM and is flatter near the bounding radius. As a

result, the inner waveguide (Fig. 13c) is narrower, the

outer waveguide is wider, and the vorticity gradient goes

smoothly to zero at r9. PositiveV1D extends from 630- to

1500-km radius and a dense set of very-low-frequency

quasimode-like waves can propagate between r 5 900–

1075 and 1500km (Fig. 13d).

Beta-plane simulations with all four profiles exhibit

northwestward tracks (Fig. 14). The MMN profile

moved fastest, traveling 8270km in 240h, with an av-

erage speed of 9.6m s21. This speed is over 50% faster

than the asymptotic speed originally simulated in MMN

because of BND dynamics and much weaker diffusion.

It was only slightly faster than the linear-quadratic pro-

file, which travels 7920km with average speed 9.2ms21.

Reflection from the peripheral vorticity-gradient jump

may explain the faster propagation. Despite its wider

waveguide, the linear-cubic profile is significantly slower

(6600km, 7.6m s21). Slowest of all was the WW11 pro-

file (5270km, 6.1m s21).

Although the wavenumber-1 streamfunction fields for

these simulations are similar, apart from horizontal

scale, the vorticity fields after 240 h differ qualitatively.

The WW11 vortex exhibits two interlocking trailing

spirals (Fig. 15a, also Fig. 5a) that become filamented at

the critical radius r 5 500–800km and extend outward

beyond r . 2000 km. They are plausibly described as

very-low-frequency vortex Rossby waves, but the dy-

namics may be more complicated.

The outer region of the MMN vortex (Fig. 15b) ex-

hibits no advection of mean-flow vorticity by the per-

turbation flow because the mean vortex is irrotational

beyond r5 500km. Thus, it cannot support outer vortex

Rossby waves. Nonetheless, it does show the same fila-

mentation at slightly smaller radius than the WW11

vortex, with trailing spirals extending to the boundaries

of the domain. At the more distant end of the domain,

the vorticity equation reduces to a balance between the

Eulerian derivative of perturbation vorticity and me-

ridional advection of planetary vorticity, resulting in

largest amplitude west and east of the center. Closer

to the center, azimuthal advection becomes significant

so that the spirals wrap around to the southern and

northern sides of the center (e.g., Chan and Williams

1987) and ultimately become filamented. Strong forcing

due to advection by the irrotational outer vortex ac-

counts for the large amplitude and fast motion.

Both of the finitely bounded vortices exhibit trailing

spirals confined to the outer waveguide with filamentation

at the critical radius and reflection at the bounding radius.

The linear-quadratic profile (Fig. 15c) has a narrower

waveguide withmaximum vorticity at the outer bounding

discontinuity of the mean vorticity gradient. We argue

that resonant forcing of these waves, albeit damped by

critical radius absorption, explains the rapid propaga-

tion even though the b forcing is comparatively weak

because the vortex is more compact than the WW11

or MMN profiles.

The linear-cubic vortex (Fig. 15d) has a broader

waveguide, 900–1500km, with maximum vorticity am-

plitude near its middle and critical radius absorption at

its inner boundary. A more diffuse locus of reflection at

the waveguide’s outer boundary and a somewhat sharper

gradient of mean-flow angular velocity near the critical

radius render the waveguide leakier, resulting in smaller

amplitude and slower propagation.

FIG. 14. Comparison among tracks for 240-h simulations of the

motions on a b plane of vortices with WW11, MMN, linear-cubic,

and linear-quadratic mean-wind profiles.
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Tracks of the WW11 (Fig. 16a) and MMN (Fig. 16b)

vortices are sensitive to the value of the second-order dif-

fusion constant K. It is much smaller than that used in the

earlier studies, ranging from0.5 through 4m2s21. TheMMN

vortex is faster for all values. Translation speeds generally

accelerate without limit throughout the 240-h simulation

when K# 1 and asymptote when K$ 1.5m2s21.

Unlimited acceleration or asymptotic speed was a cen-

tral discrepancy between these earlier studies. Prog-

nostic variables in both studies were velocity components

and geopotential or fluid depth. While both earlier

models contained the essential physics of filamentation,

the process was less well represented than in the present

model where vorticity is the prognostic variable. Use of

fourth-order diffusion in MMN resulted in more realistic

and stronger dissipative loss at the critical radius that

limited the growth of the b gyres and acceleration of

the vortex translation. Second-order diffusion in W92

underestimated critical-radius damping so that the ra-

dially trapped normal mode could grow resonantly in

the outer waveguide of the finitely bounded mean vortex.

The WW11 vortex probably represents an intermediate

case. It has an outer waveguide, but the mean radial

vorticity gradient is fairly weak, and b advection by

the mean flow is strong so that the vorticity spirals

are plausibly a superposition of waves trapped in

the outer waveguide and nonpropagating vorticity

asymmetries.

9. Conclusions

The present barotropic nondivergent, vortex-following

model is the simplest framework within which to study

rotational dynamics of vortex motion initialized from rest

in a quiescent environment on ab plane. The linear results

attempt to replicate the vortex-following, linear shallow-

water, primitive-equation model (W92) in a completely

reformulated MATLAB implementation. This model

simulates b gyres with southeast-to-northwest flow be-

tween them and a steadily accelerating northwestward

FIG. 15. Comparison among relative vorticity fields after 240 h for (a) WW11, (b) MMN, (c) linear-quadratic, and

(d) linear-cubic vortices moving on a b plane.
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motion. These waves’ properties are consistent with

vortex Rossby waves that propagate downstream on

the reversed mean-flow vorticity gradient at the pe-

riphery of the asymptotically bounded mean vortex.

For small diffusion (K , 1m2 s21), the vortex acceler-

ates throughout the simulation. For larger values, it

asymptotically approaches an unphysically fast speed,

consistent with previously published AB results. These

values of K are more than an order of magnitude

smaller than those used previously because somewhat

finer resolution and application of the diffusion to

vorticity, rather than to velocity components and mass

variables, increases dissipation near the Rossby wave

critical radius.

The analogous nonlinear results also replicate W94

inasmuch as wave–wave interactions limited the vortex

translation speed to reasonable values. In addition, iso-

lation of nonlinearly forced anti-b gyres reveals a clear

and readily understood mechanism for reduced speed.

The nonlinearly excited wavenumber-1 asymmetry has

the same structure as the linear b gyres, but opposite

polarity. Thus, the flow they induce across the vortex

partially cancels the linear southeast-to-northwest flow

and so limits the vortex speed. The radial variations of the

Doppler-shifted frequencies show that theb gyres behave

like a leaky normalmodewith a critical radius at the inner

edge of the waveguide.

Two additional replications of the earlier normal-

mode hypotheses are frequency-domain simulations

and reinitialization. In the frequency-domain model,

inner boundary conditions on an annular domain sup-

press the a-gyre asymmetries and the vorticity equation

is forced at a specified low frequency. The resulting

wavenumber-1 asymmetry at very low cyclonic fre-

quencies has structure and orientation consistent with

the b gyres. In reinitialization, the b-effect forcing is

turned off at a specified simulated time and the vorticity

field is scaled or reoriented. The vortex turns slowly in a

cyclonic sense, consistent with the low cyclonic fre-

quencies of free vortex Rossby waves in the outer

waveguide. As vorticity leaks inward to the VRW crit-

ical radius, the b gyres and motion decay fairly quickly

initially and then move slowly before leveling off

through the remainder of the simulation.

Replication of the unlimited linear acceleration and

asymptotic nonlinear acceleration for small diffusion sup-

ports earlier results. The existence of the outer waveguide

is the key to understanding the b gyres as free waves. It

permits propagation only in a narrow very-low-frequency

passband in bounded vortices. The wavenumber-1

asymmetry is not a single normal mode in a traditional

sense but resembles a quasimode, a narrow continuum of

waves that are slowly damped through axisymmetrization

at their critical radii.

As idealized as these simulations are, they suggest that

operational vortex bogusing with carefully designed

wavenumber-1, and perhaps wavenumber-2, asymme-

tries on finitely bounded vortices may be a good way to

avoid initialization transients and adjust initial vortex

motion. Baroclinic mean vortices and sparse observa-

tions make observational verification challenging. None-

theless, the basic structures of the beta gyres and their

influence on motion have long-standing observational

support (Holland 1984).

FIG. 16. Comparison between 240-h tracks for (a) WW11 and

(b) MMN vortices moving on a b plane with diffusion constants

K 5 0.5–4m2 s21.
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